博客
关于我
Kickdown UVA - 1588
阅读量:422 次
发布时间:2019-03-05

本文共 3026 字,大约阅读时间需要 10 分钟。

A research laboratory of a world-leading automobile company has received an order to create a special transmission mechanism, which allows for incredibly efficient kickdown — an operation of switching to lower gear. After several months of research engineers found that the most efficient solution requires special gears with teeth and cavities placed non-uniformly. They calculated the optimal flanks of the gears. Now they want to perform some experiments to prove their findings.

The first phase of the experiment is done with planar toothed sections, not round-shaped gears. A section of length n consists of n units. The unit is either a cavity of height h or a tooth of height 2h. Two sections are required for the experiment: one to emulate master gear (with teeth at the bottom) and one for the driven gear (with teeth at the top).

There is a long stripe of width 3h in the laboratory and its length is enough for cutting two engaged sections together. The sections are irregular but they may still be put together if shifted along each other.

The stripe is made of an expensive alloy, so the engineers want to use as little of it as possible. You need to find the minimal length of the stripe which is enough for cutting both sections simultaneously.

Input

The input file contains several test cases, each of them as described below.

There are two lines in the input, each contains a string to describe a section. The first line describes master section (teeth at the bottom) and the second line describes driven section (teeth at the top). Each character in a string represents one section unit — 1 for a cavity and 2 for a tooth. The sections can not be flipped or rotated.

Each string is non-empty and its length does not exceed 100.

Output

For each test case, write to the output a line containing a single integer number — the minimal length of the stripe required to cut off given sections.

Sample Input

211211211222121121212121221212121221122112221212

Sample Output

10815

HINT

相当于两个滑块,一个不懂一个动,求最小长度。下面的代码可以更简洁一点,就是把重复的地方封装成函数,可以省不少代码量。

Accepted

#include
#include
#include
int main(){ char a[101]; char b[101]; char c[201]; while (scanf("%s%s", a, b) != EOF) { int lena = strlen(a); int lenb = strlen(b); int min = lena+lenb; for (int i = 0;i <= lena; i++) { int flag = 0; memset(c, '\0', sizeof(c)); strcpy(c, a); for (int j = 0;j < lenb;j++) { if (c[j + lena - i] != '\0') { c[j + lena - i] += b[j] - '0'; if (c[j + lena - i] > '3') { flag = 1;break; } } else c[j + lena - i] = b[j]; } if (!flag)min = strlen(c) < min ? strlen(c) : min; } for (int i = 0;i <= lenb;i++) { int flag = 0; memset(c, '\0', sizeof(c)); strcpy(c, b); for (int j = 0;j < lena;j++) { if (c[j + lenb - i] != '\0') { c[j + lenb - i] += a[j] - '0'; if (c[j + lenb - i] > '3') { flag = 1;break; } } else c[j + lenb - i] = a[j]; } if (!flag)min = strlen(c) < min ? strlen(c) : min; } printf("%d\n",min); }}

转载地址:http://jrxzz.baihongyu.com/

你可能感兴趣的文章
Nginx SSL私有证书自签,且反代80端口
查看>>
Nginx upstream性能优化
查看>>
Nginx 中解决跨域问题
查看>>
nginx 代理解决跨域
查看>>
Nginx 做负载均衡的几种轮询策略分析
查看>>
Nginx 入门,一篇搞定!
查看>>
Nginx 利用代理转发请求示例
查看>>
Nginx 动静分离与负载均衡的实现
查看>>
Nginx 反向代理 MinIO 及 ruoyi-vue-pro 配置 MinIO 详解
查看>>
nginx 反向代理 转发请求时,有时好有时没反应,产生原因及解决
查看>>
Nginx 反向代理+负载均衡
查看>>
Nginx 反向代理解决跨域问题
查看>>
Nginx 反向代理配置去除前缀
查看>>
nginx 后端获取真实ip
查看>>
Nginx 多端口配置和访问异常问题的排查与优化
查看>>
Nginx 如何代理转发传递真实 ip 地址?
查看>>
Nginx 学习总结(16)—— 动静分离、压缩、缓存、黑白名单、性能等内容温习
查看>>
Nginx 学习总结(17)—— 8 个免费开源 Nginx 管理系统,轻松管理 Nginx 站点配置
查看>>
Nginx 学习(一):Nginx 下载和启动
查看>>
nginx 常用指令配置总结
查看>>