博客
关于我
Kickdown UVA - 1588
阅读量:422 次
发布时间:2019-03-05

本文共 3026 字,大约阅读时间需要 10 分钟。

A research laboratory of a world-leading automobile company has received an order to create a special transmission mechanism, which allows for incredibly efficient kickdown — an operation of switching to lower gear. After several months of research engineers found that the most efficient solution requires special gears with teeth and cavities placed non-uniformly. They calculated the optimal flanks of the gears. Now they want to perform some experiments to prove their findings.

The first phase of the experiment is done with planar toothed sections, not round-shaped gears. A section of length n consists of n units. The unit is either a cavity of height h or a tooth of height 2h. Two sections are required for the experiment: one to emulate master gear (with teeth at the bottom) and one for the driven gear (with teeth at the top).

There is a long stripe of width 3h in the laboratory and its length is enough for cutting two engaged sections together. The sections are irregular but they may still be put together if shifted along each other.

The stripe is made of an expensive alloy, so the engineers want to use as little of it as possible. You need to find the minimal length of the stripe which is enough for cutting both sections simultaneously.

Input

The input file contains several test cases, each of them as described below.

There are two lines in the input, each contains a string to describe a section. The first line describes master section (teeth at the bottom) and the second line describes driven section (teeth at the top). Each character in a string represents one section unit — 1 for a cavity and 2 for a tooth. The sections can not be flipped or rotated.

Each string is non-empty and its length does not exceed 100.

Output

For each test case, write to the output a line containing a single integer number — the minimal length of the stripe required to cut off given sections.

Sample Input

211211211222121121212121221212121221122112221212

Sample Output

10815

HINT

相当于两个滑块,一个不懂一个动,求最小长度。下面的代码可以更简洁一点,就是把重复的地方封装成函数,可以省不少代码量。

Accepted

#include
#include
#include
int main(){ char a[101]; char b[101]; char c[201]; while (scanf("%s%s", a, b) != EOF) { int lena = strlen(a); int lenb = strlen(b); int min = lena+lenb; for (int i = 0;i <= lena; i++) { int flag = 0; memset(c, '\0', sizeof(c)); strcpy(c, a); for (int j = 0;j < lenb;j++) { if (c[j + lena - i] != '\0') { c[j + lena - i] += b[j] - '0'; if (c[j + lena - i] > '3') { flag = 1;break; } } else c[j + lena - i] = b[j]; } if (!flag)min = strlen(c) < min ? strlen(c) : min; } for (int i = 0;i <= lenb;i++) { int flag = 0; memset(c, '\0', sizeof(c)); strcpy(c, b); for (int j = 0;j < lena;j++) { if (c[j + lenb - i] != '\0') { c[j + lenb - i] += a[j] - '0'; if (c[j + lenb - i] > '3') { flag = 1;break; } } else c[j + lenb - i] = a[j]; } if (!flag)min = strlen(c) < min ? strlen(c) : min; } printf("%d\n",min); }}

转载地址:http://jrxzz.baihongyu.com/

你可能感兴趣的文章
Node-RED中建立Websocket客户端连接
查看>>
Node-RED中建立静态网页和动态网页内容
查看>>
Vue3+Element-ul学生管理系统(第二十二课)
查看>>
Node-RED中怎样让网站返回JSON数据
查看>>
Node-RED中根据HTML文件建立Web网站
查看>>
Node-RED中解析高德地图天气api的json数据显示天气仪表盘
查看>>
Node-RED中连接Mysql数据库并实现增删改查的操作
查看>>
Node-RED中通过node-red-ui-webcam节点实现访问摄像头并截取照片预览
查看>>
Node-RED中配置周期性执行、指定时间阶段执行、指定时间执行事件
查看>>
Node-RED安装图形化节点dashboard实现订阅mqtt主题并在仪表盘中显示温度
查看>>
Node-RED怎样导出导入流程为json文件
查看>>
Node-RED简介与Windows上安装、启动和运行示例
查看>>
Node-RED订阅MQTT主题并调试数据
查看>>
Node-RED通过npm安装的方式对应卸载
查看>>
node-request模块
查看>>
node-static 任意文件读取漏洞复现(CVE-2023-26111)
查看>>
Node.js 8 中的 util.promisify的详解
查看>>
node.js debug在webstrom工具
查看>>
Node.js Event emitter 详解( 示例代码 )
查看>>
Node.js GET、POST 请求是怎样的?
查看>>